Sampling from the stochastic block model of networks
Arguments
- n
Number of vertices in the graph.
- pref.matrix
The matrix giving the Bernoulli rates. This is a K×K matrix, where K is the number of groups. The probability of creating an edge between vertices from groups i and j is given by element (i,j). For undirected graphs, this matrix must be symmetric.
- block.sizes
Numeric vector giving the number of vertices in each group. The sum of the vector must match the number of vertices.
- directed
Logical scalar, whether to generate a directed graph.
- loops
Logical scalar, whether self-loops are allowed in the graph.
- ...
Passed to
sample_sbm()
.
Details
This function samples graphs from a stochastic block model by (doing the
equivalent of) Bernoulli trials for each potential edge with the
probabilities given by the Bernoulli rate matrix, pref.matrix
.
The order of the vertices in the generated graph corresponds to the
block.sizes
argument.
References
Faust, K., & Wasserman, S. (1992a). Blockmodels: Interpretation and evaluation. Social Networks, 14, 5--61.
See also
Random graph models (games)
erdos.renyi.game()
,
sample_()
,
sample_bipartite()
,
sample_correlated_gnp()
,
sample_correlated_gnp_pair()
,
sample_degseq()
,
sample_dot_product()
,
sample_fitness()
,
sample_fitness_pl()
,
sample_forestfire()
,
sample_gnm()
,
sample_gnp()
,
sample_grg()
,
sample_growing()
,
sample_hierarchical_sbm()
,
sample_islands()
,
sample_k_regular()
,
sample_last_cit()
,
sample_pa()
,
sample_pa_age()
,
sample_pref()
,
sample_smallworld()
,
sample_traits_callaway()
,
sample_tree()
Author
Gabor Csardi csardi.gabor@gmail.com
Examples
## Two groups with not only few connection between groups
pm <- cbind(c(.1, .001), c(.001, .05))
g <- sample_sbm(1000, pref.matrix = pm, block.sizes = c(300, 700))
g
#> IGRAPH 71f35cb U--- 1000 16954 -- Stochastic block model
#> + attr: name (g/c), loops (g/l)
#> + edges from 71f35cb:
#> [1] 3-- 5 7-- 9 8--10 9--10 2--11 6--11 1--12 6--12 6--13 12--14
#> [11] 2--15 3--15 9--15 5--16 2--17 11--17 12--17 14--17 10--18 17--18
#> [21] 6--19 14--19 17--19 16--20 3--21 7--21 11--21 12--21 1--22 5--22
#> [31] 4--23 8--23 12--23 20--23 4--25 14--25 6--26 7--26 11--26 1--27
#> [41] 6--27 8--27 20--27 25--27 23--28 26--28 1--29 14--29 15--29 17--30
#> [51] 19--30 12--31 16--31 26--31 22--32 24--32 18--33 9--34 11--34 5--35
#> [61] 18--35 24--35 27--35 34--35 10--36 19--36 22--36 28--36 2--37 11--37
#> [71] 12--37 14--37 25--37 29--37 2--38 7--38 22--38 31--38 6--39 8--39
#> + ... omitted several edges